The Mediator Chromatic Number of Grid Graphs
نویسندگان
چکیده
منابع مشابه
The locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملthe locating chromatic number of the join of graphs
let $f$ be a proper $k$-coloring of a connected graph $g$ and $pi=(v_1,v_2,ldots,v_k)$ be an ordered partition of $v(g)$ into the resulting color classes. for a vertex $v$ of $g$, the color code of $v$ with respect to $pi$ is defined to be the ordered $k$-tuple $c_{{}_pi}(v)=(d(v,v_1),d(v,v_2),ldots,d(v,v_k))$, where $d(v,v_i)=min{d(v,x):~xin v_i}, 1leq ileq k$. if distinct...
متن کاملThe distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملGame chromatic number of graphs
y Abstract We show that if a graph has acyclic chromatic number k, then its game chromatic number is at most k(k + 1). By applying the known upper bounds for the acyclic chromatic numbers of various classes of graphs, we obtain upper bounds for the game chromatic number of these classes of graphs. In particular, since a planar graph has acyclic chromatic number at most 5, we conclude that the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2010
ISSN: 0975-8887
DOI: 10.5120/920-1298